Welcome to my pages.

New pages added recently:
Signs of Intelligent Life
Appeal for the Regnum Marianum Church - Budapest - Hungary
Antarctica



Map of Europe       Map of Hungary       Map of Budapest

Click for Budapest, Hungary Forecast

Hungary, facts in brief        Hungary, history in brief

Budapest, facts and history in brief



The Hungary Page - Science, Mathematics, & Technology II

Send me a message! Copyright (c) 1996 - 2004,  All Rights Reserved

Hungarian Coat of Arms
 Science, Mathematics, & Technology II, <<I

"Scientific research consists of seeing what everyone else has seen, but thinking what no one else has thought" - Albert Szent-Györgyi, Nobel Prize, 1937: Physiology and Medicine

I receive contributions to this list from all over the world. As I indicated earlier, I do get quite a bit of hate mail regarding this site and this list.  I assure you that names are not added to this list until verified.  Click to [Submit] a Famous Hungarian. Please include a resource for verification purposes. 


Jump to:

Béla Barényi (b. 1907, Hirtenberg, Austria, d. 1997, Sindelfingen, Germany)
Engineer, Auto Safety Pioneer - Father of the Volkswagen Beetle, Passive Safety, Occupant Safety Cell, Collapsible Steering System, AND the Seat Belt!

Bela Barenyi completed his studies at the Technikum in Vienna. His father was an Colonel in the Austro-Hungarian Military and his mother from one of the wealthiest Austrian families. When Pozsony became part of the new "Czechslovakia" in 1920, his family took Czechoslovak citizenship. In 1925, he designed the famous Volkswagen Beetle. Because Porsche was later credited with the invention (1938), Berényi took legal action in 1955. The German Courts and the State Patent Office in Mannheim acknowledged that Barényi had invented the concept and the main components of the Volkswagen. Barényi only asked for 1DM (one German Mark) as compensation.

From 1939 to 1974 he worked for Daimler-Benz, heading the strategic planning department for a significant period. Several of his inventions were decades ahead of their time. Passive safety was one of these ideas. Out of his 2500 inventions for the automobile industry, dividing cars into three collision zones was the most significant one (1951). The rigid passenger cell is enclosed by deformable front and rear ends (crumple zones) which absorb the impact of collision. In order to mass-produce his design he had to replace the rigid undercarriage with a floor plate, patented in 1943. Since 1959, Daimler Benz (and today every automobile company in the world) manufactures cars - acknowledged for their safety worldwide - based on Barényi's design. Crash tests are also associated with his name.

Bela Barenyi retired in 1974. Barényi's inventions completely changed the world's automobile production. In recognition of his achievements he was admitted to the Automotive Hall of Fame in 1994, the single greatest honor in the motor vehicle industry. His ideas saved the lives of millions.

Trivia:

  • A 1993 Mercedes-Benz advertisement featuring Barenyi’s image proudly stated: “No one in the world has given more thought to car safety than this man.”

- See the Automotive Hall of Fame
- See Bela Barenyi


Ányos Jedlik (b. 1800, Szimő in the county of Komárom [Komarno today after annexation by Slovakia] d. 1895)
Priest, Engineer, Physicist, Inventor - Father of the Dynamo

Though he preceded his contemporaries in his scientific work, he did not speak about his most important invention, his prototype dynamo, until 1856; it was not until 1861 that he mentioned it in writing in list of inventory of the university. Although that document might serve as a proof of Jedlik's status as the originator, the invention of the dynamo is linked to Siemens' name because Jedlik's invention did not rise to notice at that time.

Jedlik's education began at Nagyszombat and Pozsony (Bratislava today after Slovak annexation) high schools. In 1817 he became a Benedictine and from that time continued his studies at the schools of that order. In 1827 he started experimenting with electromagnetic rotating devices which he called "lightning-magnetic self-rotor" (approximate translation). In 1829 he constructed the first rotating machine based on the electromagnetic impulse, which was the predecessor of the DC motor. He lectured at Benedictine schools up to 1839, then for 40 years at the Budapest University of Sciences department of physics-mechanics. In 1845 he began teaching his pupils in Hungarian in lieu of Latin. Through his textbook he is regarded as one of the establishers of Hungarian vocabulary in physics. He became the dean of the faculty of arts in 1848, and by 1863 he was rector of the University.  From 1858 he was a corresponding member of the Hungarian Academy of Sciences and from 1873 an honorary member. 

In the 1850s he conducted optical and wave mechanical experiments, and at the beginning of the 1860s he constructed an excellent optical grate. Ányos Jedlik's best known invention is the principle of self-excitement. His journal records in 1859 that he discovered the principle of self-ignition and the fact that a remnant magnetic force in the core was sufficient for starting the process. In 1861 he constructed a "single-pole electric starter", which exploited the principle of self-ignition. His machine was a unipolar generator with no brushes. With the single pole electric starter, he formulated the concept of the dynamo (seen here) at least 6 years prior to Siemens and Wheatstone. Jedlik also recognized that when electricity was connected to the device, it became an electric motor.  In 1863 he discovered the possibility of voltage multiplication and demonstrated it with a "tubular voltage generator" (1868), which was successfully displayed at the 1873 Exhibition in Vienna.  

- See more Hungarian Inventors at the Hungarian Patent Office or
- See "Innovators and Innovations"


Joseph Galamb - (1881 - 1955)
Ford Chief Engineer: Designed the Model T and Model A Ford, the Fordson Tractor, invented the Ignition Plug and the Planetary Gearbox, and prepared the production of Liberty aircraft engines. 

One of the most talented technical forebears in American automotive industry, József Galamb had a very eventful career. He was born in the small Hungarian town of Makó in 1881. After graduating at the Budapest Technical University, he started to work in a wagon factory and later joined the biggest Hungarian automobile factory in Arad, Transylvania (now Oradea, Rumania after annexation in 1920). At the beginning of the 1900s he studied manufacturing processes in the German Adler car factory, finally in 1903 crossed the Atlantic and tried his luck in the United States. He turned up in several cities including St. Louis, Cleveland, and Detroit. He began to work with Ford in December 1905. 

Preliminary design works lasted six months. When Ford approved a part, it was immediately made of wood and thus, the new Model T slowly took shape. Its most important part was the planetary gearbox, one of Galamb's most brilliant inventions.  The Model T designed by Galamb was ready by 1908 and 19 thousand cars were sold the next year. By adjusting the line, output was increased and unit costs reduced. By 1915, production reached 1 million units and by 1927, when the production of the Model T stopped, a total of 15 million had left the factory.  József Galamb also designed the world-famous Fordson tractor and the ignition plug. During World War I, he designed ambulance vans and light tanks, prepared the production of Liberty aircraft engines.  In 1927, he designed the modern and more elegant Model A to replace the now old-Model T. In 1937 he was appointed as chief constructor at Ford, and he kept this position until his retirement in 1944. 

His daughter, Gloria Galamb Albinak wrote to me saying: "...to my surprise and pleasure I saw where you have my father, Joseph Galamb, listed as a famous Hungarian! Perhaps you would like to add his dates: 1881-1955 and the fact that he was at Ford Motor from 1906 to 1945, when he retired. He was Chief Engineer there, cut his teeth on the Model T and designed all Ford cars, tractors and airplanes until his health forced his leaving. He was a graduate of the Technicon, served in the Austro-Hungarian Navy stationed at Pola, came to the USA to attend the St. Louis World`s Fair in 1903 and stayed."

See Hungarians in the History of Transportation or Hungarian Inventors at the Hungarian Patent Office


Lajos Lóczy - (b. 11/2/1849 Pozsony, Hungary [now called Bratislava after Czech annexation], d. 5/13/1920, Balatonarács, Hungary)
Great Geologist and Geographer of Tibet and China

First to scientifically describe the mountains bordering the Tibetan Plateau that connect the Kunlun Mountains with the north-south-oriented belt of mountains and gorges in central China. In 1878, he, with Hungarian Count Béla Széchenyi and Gustav Kreitner, was the first western visitor to remote ancient Buddhist sites such as the oasis town of Dunhuang, situated at the edge of the Gobi desert, in the west of the present-day Chinese province of Gansu. He wrote many accounts his discoveries. He is also well known for his detailed research on Lake Balaton’s environs. 

He subsequently mentioned a "hidden library," one of the "Treasures of Mogao," to a friend, Aurel Stein, a Hungarian-born British subject who was later knighted for his Central Asia explorations and for the archaeological collections (now in Britain and India) that he amassed. 

- See The Spirit of Hungary or Purchase this incredible book!
-
See the The birth and achievements of Hungarian oriental studies

More on Sir Aurel Stein below...


Sir Aurel Stein (b. 11/26/1862 Budapest, d. 1943), 
"The most prodigious combination of scholar, explorer, archaeologist and geographer of his generation" - The "Sven Hedin of England" - pioneered the use of aerial photography in archaeology. 

After receiving his education in Budapest, Dresden and Vienna he moved to Tübingen and later to England where he devoted himself to Asiatic studies. In London  he did intensive research into the languages, the history and the antiquities of Asian countries. In 1888 he was professor of Sanskrit language and literature at the Punjab University in Lahore. After doing archeological explorations in India and Kashmir, Stein crossed the Himalayas in 1900 to excavate the ancient ruins in the deserts of Chinese Turkestan. During his second expedition there (1906-1908) he explored the region of Lop Nor, traced the Great Wall of China, and opened up the Church of the Cave of the Thousand Buddhas, which had been brought to his attention by Lajos Lóczy (above). 

Stein won world fame through the expeditions he ran to Eastern Turkestan, Afghanistan and Iran. He pioneered not the Silk Road itself but its recovery for historical memory, as well as the recovery of the cultures which had flourished along its route and then passed into dry, sandy silence. He recovered and published the text of what is almost the only native history of India from before the Muslim invasions; conducted some of the first archaeological surveys of Iran and Iraq; pioneered, in his sixties, the use of aerial photography in archaeology. A large part of the materials collected during his exploratory trips was transferred to London, and another part is on display as a separate collection at the Delhi National Museum. He held the post of general director at the Indian Archaeological Directorate from 1910. He bequeathed his valuable library, manuscripts, letters and collection of photos to the Hungarian Academy of Sciences.

Aurel Stein was one of the few honorary members of the British Geographical Society. Stein met his death while traveling in Kabul, Afghanistan. 

- See The Spirit of Hungary or Purchase this incredible book!
- See the The birth and achievements of Hungarian oriental studies 
- See the British Council 
- Buy the book entitled "Sir Aurel Stein," by Annabel Walker: For 40 years, Sir Aurel Stein the archaeologist, led the race to uncover a long-lost Buddhist civilization which had lain for a thousand years beneath China's deserts. This book unfolds the remarkable story of how Stein's single-minded dedication revealed the glories of the Silk Road.


Dr. Albert Fonó - (b. 1881 - d. 1972)
Mechanical EngineerReceived the first patent on airplane jet propulsion and enabled aircraft to fly faster than the speed of sound. Developed Torpedos, Jet Artillery, Air Compressors.

The Budapest-born mechanical engineer received his diploma in 1903 at the Budapest Technical University. His main professional interest was energetics, though his theoretical work was extensive. After gaining experience at German, Belgian, Swiss and French factories, he obtained his degree of Ph.D. in the technical field.   His first invention was an aerial torpedo in 1915, which operated on the jet propulsion principle. This invention increased the effective range of artillery. It was a significant invention but failed to attract interest.   On the other hand, inventions which were more in accord with the technical level of his age became successful. He patented a new steam boiler in 1923 and an air compressor for mines in 1928. A patent application for his most important invention, the jet propulsion engine, was filed in Germany. This engine enabled aircraft to fly faster than the speed of sound. It took 4 years of preliminary examination before he received his patent in 1932. With this advanced invention Fonó proved himself ahead of his time.  From 1954 he was a corresponding member of the Hungarian Academy of Sciences. He received the Kossuth Prize in 1956 and from 1968 he was a corresponding member of the International Academy of Astronautics. 

- See Hungarian Inventors at the Hungarian Patent Office
- See The Spirit of Hungary or Purchase this incredible book!


Mária Telkes (b. 1900, d. 1996)
Chemist, Engineer: Pioneer of Solar Energy:
"Mother of the Solar Home," " The "Sun Queen," and "world's most famous woman inventor in solar energy."

Maria Telkes first became interested in the problems of solar power as a high-school student. She came to the United States in 1925 with a Ph.D. in physical chemistry from the University of Budapest. After working for twelve years at the Cleveland Clinic as a biophysicist, she went to the research laboratories of Westinghouse Electric Corporation. Between 1939 and 1953 she was at the Massachusetts Institute of Technology as a research associate in metallurgy.  It was at MIT that she became known for her research in solar energy. The first experimental house using solar heating was built under her supervision in 1948. 

During World War II she served as civilian advisor to the Office of Scientific Research and Development, devoting her efforts to the design of a distilling system using solar heat to convert sea water into drinking water. In 1945, Dr. Telkes received a certificate from OSRD for her development of a portable solar distiller for life rafts. In 1953 she became project director at the College of Engineering, NYU, and then research director of the Solar Energy Laboratory, Curtiss-Wright Corporation.

She designed two more dwellings that harness solar energy and obtained approximately 20 patents (distillation equipment, portable desalination of seawater on life rafts, heat storage, cold storage).  She designed, built, and tested solar thermoelectric generators for terrestrial and space uses. She realized that fuel conservation was needed for 20th-century cook stoves so she decided to turn to a solar again and designed one of her well-known inventions: the solar oven.  The Ford Foundation issued a $45,000 grant to Dr. Telkes to continue the development of her solar oven. This grant allowed her to give it many more capabilities: her solar ovens are designed to be used to create any tribal or national cuisine, can by used safely by children, will not scorch foods, and free the cook from constant stirring. In 1973, public interest in solar energy grew after the oil shock. This led to the construction (a joint effort of MIT and the Department of Energy) of the Carlisle solar house in Carlisle , Massachusetts, in 1980. Her solar-energy inventions even led to the development of a faster way to dry crops.

She received the first Achievement award ever given by the Society of Women Engineers in 1952 during her tenure at MIT in recognition of her meritorious contributions to the utilization of solar energy. In addition, Dr. Telkes became known as one of the pioneers of solar energy usage when she received the Charles Greeley Abbot Award (which is awarded by the American Solar Energy Society) in 1977. 

- See "Innovators and Innovations"
- See the Society for Women Engineers
- See Virginia Tech
- See Inventions.org


Oscar Asbóth - (1881 - 1960) 
Engineer: Student of Theodore Kármán and Helicopter Pioneer.  

In the first decades of modern aviation history, airplane designers seeking for new flying techniques probed many different solutions; along with the rigid-wing "dra-gon" or the orni-thopter, they also experimented with propellers rotating around a vertical shaft. During World War I, Lieutenant-colonel István Petróczy, professor Tódor Kármán and Vilmos Zurovetz jointly made hovering experiments with a windmill plane. At some of these Oszkár Asbóth then only 27 years old, also participated. 

He finished his studies at Arad, Transylvania (today Oradea in Romania) and became a member of a motor sport club as a teenager. He was only 18 when he built his first glider pulled up into the air by a motorcycle. Soon he designed an engine-driven plane and a stabilizer which was among the prize-winners at a competition organized by the Austro-Hungarian Defense Ministry.  After the outbreak of World War I, he did military service at an aircraft factory near Vienna where he was in charge of propeller manufacturing. Asbóth constructed and tested some 1500 propellers in the wind channel of the factory.  Ten years later Asbóth built his first helicopter. Powered by a 120 HP nine-cylinder engine and propelled by two wooden propellers, each 4.35 meter in diameter, placed parallel above each other and rotating in opposite direction, the model "AH 1" took off vertically on September 9, 1928. Tires were replaced by four footballs to provide sufficient flexibility for landing. For its maiden flight, after 1100 rotations the plane swiftly took off, at ten meters stopped, hovered for some ten minutes, than smoothly descended.  

A director of the research department of the British Air Ministry R. N. Liptrot, who also traveled on the helicopter, wrote in the British Journal of the Aeronautical Society in 1931: 

"the Asboth-helicopter ascends vertically with a remarkable speed...to any height where it can hover stationary for some time. It can be perfectly navigated. But the most remarkable is that, unlike other tested helicopters, this one remains absolutely stable around all axes..."  

Asbóth's merits were much more recognized in foreign countries than in his homeland. In 1954, on the 25th anniversary of the maiden flight of his first helicopter, the Fédération Aeronautique Internationale (Paris) awarded Oszkár Asbóth with the Paul Tissandier diploma for his lifetime achievements in aeronautics.

See Hungarians in the History of Transportation


Zoltán Bay - (b. Gyulavári, Hungary, d. 1992, Washington, DC)
Physicist - First to use radar to take measurements of the moon, developed the Light Meter. 

Following his attendance at the Presbyterian Boarding-school in Debrecen, he continued his studies at the Pázmány Péter Academy of Sciences where he obtained his Ph.D. Following a four-year study tour in Berlin, from 1930 he worked at the University of Szeged as a professor of theoretical physics. He developed his radar in 1936 at the laboratory at Tungsram. As the head of the laboratory, he developed several patents in the field of high voltage gas discharge tubes, fluorescent and vacuum tubes. He lectured between 1938 and 1948 at the Budapest Technical University. He developed radar for air defense in Budapest during World War II, independently of British and German efforts. With his research team in 1946 he observed the reflection of radar beams aimed at the moon, which was considered revolutionary in space research at that time

He was forced to leave Hungary, and between 1948 and 1955 he worked as a professor of experimental physics at the George Washington University where he was engaged in ionization experiments and light speed measurements, developing the definition of the“light meter.” On the basis thereof his new definition of the meter was accepted by the International Weights and Standards Institute in 1983. From 1955 to 1972 he was a departmental head at the U.S. Bureau of Standards. Subsequently he became a professor at the American University. In 1981 the Hungarian Academy of Sciences and the Eötvös Loránd Society of Physics elected Bay honorary member. He achieved considerable success in the physics of active gases, and worked out the method of fast atom counting, operating on the principle of secondary electron multiplying. He justified by experiment that the universal system of measuring time and length based on the speed of light was in fact valid, thus proving Einstein's idea of space-time.

On his 90th birthday he was decorated with the The Order of the Hungarian Republic adorned with rubies. He passed away in Washington on October 4th, 1992. According to his last will, his ashes returned to his native country

- Visit the Bay Zoltán Bibliography
- See The Spirit of Hungary or Purchase this incredible book!
- Read George Marx's Conflicts and Creativity


Paul Erdôs - (b. Born: 3/26/1913, Budapest, Hungary, d. 9/20/1996 Warsaw, Poland)
Legendary Mathematician: "The Greatest Mathematician of the 20th Century"

"When one reads of Paul Erdös, two words invariably come up: prolific and eccentric. While "above average" mathematicians publish some 20 articles in a lifetime, Erdös wrote over 1500 papers, books, and articles, more than any mathematician in history. To say that he was prolific, which means productive, is a fair description. The March 29, 1999 edition of Time magazine, Michael D. Lemonick writes "In a profession with no shortage of oddballs, he was the strangest. Erdös had no home, no possessions, and no life aside from mathematics." The statements are true, so eccentric is probably a fair description of Paul Erdös as well. Despite his peculiarities, Paul Erdös was arguably one of the greatest mathematicians of the twentieth century. He is credited with 'one of the greatest mathematical discoveries of the twentieth century...the simple equation that two heads are better than one.'"

Revered by colleagues and considered to be the "most brilliant mind in his field," he collaborated with so many mathematicians that the phenomenon of the "Erdos Number" evolved. To have an Erdos number 1, a mathematician must have published a paper with Erdos. To have a number of 2, he or she must have published with someone who had published with Erdos, and so on. Four and a half thousand mathematicians have an Erdos number of 2. Erdös has been referred to as the Johnny Appleseed of Mathematics. In his final years, Erdös had become more forgetful and somewhat slower, but he continued to travel the world, spreading his love of mathematics as Johnny spread seeds. According to Erdös, to "die" was to quit doing mathematics. To "leave" was physical death. In Warsaw, Poland for a combinatorics meeting, Erdös "left" at the age of 83, of a heart attack.

Quotes:

"Television is something the Russians invented to destroy American education."
"There'll be plenty of time to rest in the grave"

- See more from above and a great biography entitled, "The Mathematician Who Never Died: The Mathematical Contributions of Paul Erdös" by Cheryl Mootz
- To read the articles written on him in the New York Times, visit fellow mathematician from the University of Kolozsvár, Transylvania: Dr. Zoltán Kása's Homepage
- Also see Erdôs at the University of St. Andrews, Scotland, History of Mathematics Archive.


American Hungarian Federation Geza Jako, M.D., "Father of Laser Microsurgery," and pioneer of "Soft Tissue Microsurgery", Laser & Micro-Dentistry, and "Endoscopic Microsurgery." Click to see him with fellow Hungarian scientist and Father of the H-bomb, Edward TellerGeza Jako (b. Budapest, 1930)
Physician, scientist, educator. Father of soft tissue microsurgery, laser surgery, minimally invasive surgery. White House Advisor for Cancer to Presidents Reagan and Bush Sr. Pioneer of human cochlear stimulation for deafness.

Geza Julius Jako (Szalardi- von Jako), White House Advisor for Cancer to Presidents Reagan and Bush Sr. Inventor of soft tissue microsurgery, laser surgery, minimally invasive surgery. Pioneer of human cochlear stimulation for deafness. Physician, scientist, educator." A 1956 Freedom Fighter remembered for his role in establishing emergency medical services in Budapest at the start of the ill-fated Hungarian Revolution, he went on to become a Professor of Head and Neck Surgery at Boston Univ and to receive staff appointments from Harvard Medical School, MIT, and North Eastern University for Biomedical Engineering. In addition, he has had four Presidential White House appointments (among them 8 years with President Reagan) and served at the highest levels of the National Institutes of Health (NIH).

A plaque honoring Dr. Geza Jako, a 1956 Freedom Fighter remembered for his role in establishing emergency medical services in Budapest at the start of the ill-fated Hungarian Revolution. He is also "Father of Laser Microsurgery," and pioneer of "Soft Tissue Microsurgery", Laser & Micro-Dentistry, and "Endoscopic Microsurgery."Dr. Jako (pronounced yuh-ko) has hundreds of peer reviewed journal articles, books and chapters in surgery. His students have gone on top be some of the top ENT surgeons in the world. He holds several patents and the only patents on Lasers in medicine and endo-micro instruments. His first lasers are displayed in museums in Washington D.C. and in the Hungarian National Museum in Budapest in the section of Hungary's most significant scientists featuring Edward Teller, Albert Szentgyorgyi, and many others. His instruments and surgical techniques have become the "gold-standard' for head and neck surgery worldwide and in the fight against laryngeal cancer that today has saved hundreds of thousands of voice boxes. He was forced to flee to the West as a graduate medical student and today has a few historic commemorative plaque and tablets to his contributions during the '56 revolution at the significant sites during the battles. One of these shown here is at the hospital that became a focal point of the revolution and mentioned in several papers and film documentaries for 1956.

Download his [Full Biography] or read more about him and other members of the American Hungarian Federation


Eszter Pécsi (b. 1898 Kecskemét, Hungary, d. 1975, New York, USA)
Structural Engineer - designer of the first reinforced-concrete skyscraper! First woman to receive a degree in engineering in Hungary (1920)

Eszter Pecsi prepared the structural design for the indoor swimming pool on St. Margit Island (Budapest, Hungary), and the first iron-framed tall building of Budapest, the Hospital on Fiume út. In 1957 she fled Hungary and worked in Vienna, Austria for a year where she designed the city's first multi-level parking garage. From 1958 she lived and worked in New York. She was the structural designer of the first reinforced-concrete skyscraper (Hotel Americana) and two skyscrapers erected for the professors of Columbia University. For these three works, Pécsi received the year's best structural engineering design award from New York City. She was also the structural designer of numerous buildings of New York University. She developed a special method to prepare the site of the foundation for the skyscrapers along the Hudson River, for which she was named the best structural engineer of the year.

- See the Hungarian Folklore Museum


Anonymous - (14th century, Kócs, Komárom County, Northern Hungary [now called Komarno by Slovakia after annexation in 1920])
Inventor of the Light Carriage

A significant invention was the pivoting of the front wheels of carts. The pivot allowed the cart or wagon to turn quickly within a very small radius. A lightweight coach with small front wheels, indicating a pivoted assembly, was first mentioned in writing by a French knight, Bertrandon de la Brocqučre, who visited Hungary in 1433. In that same century, the kocsi, a four-wheel horse drawn vehicle developed in Hungary, was an exceptionally practical form of passenger and light freight transport. It began to be produced in large numbers. The actual name comes from the village of Kocs and the origin is reflected in other countries where it began to be used or manufactured: Kutsche in German, coche in French, coach in English, coccio in Italian, goetse in Flemish, koczi in Polish, koczy in Czech, and kusk in Swedish. (Even in the Caucasian region the word used was "madjar," the local name for Hungarian-type carts.)  

Another major Hungarian contribution to the convenience of medieval transportation was the invention of the hintó or landau (barouche in French).  Matthias, the great renaissance king of Hungary, who travelled almost constantly, had strong and flexible wooden stays fixed vertically to the front and rear axles and had the carriage body suspended on these in such a way that it did not touch the rigid undercarriage but reacted to the jolts of the vehicle with a swaying movement. To make travelling more comfortable, the carriage was lined with leather cushions. This new type of vehicle, the Hungarian hintó soon became very popular all over Europe. In the 17th century the wooden stays were replaced with forged steel springs, but the original suspending mechanism has remained unchanged up to now.

See Hungarians in the History of Transportation


Mihály Dénes (1894-1953)
Mechanical Engineer - Father of Sound Film and Television Broadcasting: Produced the first television program in history!

Mihaly Denes graduated from Vörösmarty Mihály High School (Gimnázium) and received his degree in Mechanical Engineering from the Technical University in Budapest. He is listed among the world's leading scientists in the field of electronic image transmission. On 7 June 1916, he managed to produce a successful movie with a sound track. On 30 April 1918, he applied for a patent for a method called Projectophon for recording sound pictures. His method provided good quality sound tracks with 35 mm film stock using optical sound recording, and he can thus be regarded as the inventor of the sound film. His patent was published on 18 October 1922. 

He was also engaged in early experiments in television from the 1910s. He initially developed his inventions at the Telephone Factory in Budapest, before going to Berlin in 1924, to work for AEG. His first practical piece of equipment, the Telehor, was introduced in 1928. On 8 March 1929 the Berlin-Witzleben radio station transmitted the first live television broadcast in the world, using his system.

Under Hitler's rule, he was sent to a concentration camp for hiding the persecuted. In 1953, he died from tuberculosis he acquired there.

- See "Innovators and Innovations"or
- See The Spirit of Hungary or Purchase this incredible book!


Imre Bródy (b. Gyula, Hungary 1891, d. Mühldorf, Germany 12/20/1944)
Physicist: Father of the Krypton Electric Bulb

Brody was university educated in Budapest and became a physicist. He wrote his doctoral dissertation on the chemical constant of monoatomic gases. First he taught high school, then he became an assistant professor in the department of applied physics at the University of Sciences. Early in his career he accomplished valuable theoretical work investigating specific heat and molecular heat. For a short period beginning in 1920 he worked with Max Born as assistant to the professor in Göttingen. They jointly worked out the dynamic theory of crystals. 

He returned home in 1923 and worked at Tungsram as an engineer until the end of his life. His most important invention dates from 1930. Late in the last century, scientists engaged in the radiation theory of incandescent bodies had already proved that an incandescent body radiates its energy mostly in the form of heat, and only a small part as light.

Brody put his finger on the most important problems of incandescent lamp production. According to his hypothesis, the exit of evaporating tungsten atoms from the incandescent filament through the medium of gas was regulated not by diffusion only, as it was assumed, but was also influenced by other laws of nature. To eliminate such problems, he used gas of great molecular weight (He filled lamps with krypton gas in lieu of argon), thus attaining a longer life for the lamp. He chose the length and diameter of the incandescent wire in such a way that the filament's glowing heat be increased without reducing the lamp's life span. By using krypton gas, he developed an up-to-date lamp with longer life and better performance.He also developed a new process to ascertain the krypton content of air. At the cost of a few years' work he demonstrated that krypton gas could be mass-produced at a cheap rate. Advantage of the krypton lamp was to emit more light without increased energy consumption. Its display at the Budapest Industrial Fair in 1936 was a technical sensation. 

Production of krypton filled lamps based on his invention started at Ajka in 1937. Subsequently Bródy worked on new light source problems. He remained with his family after the German occupation of Hungary in 1944, and despite of the immunity the factory provided for him, he succumbed to certain death. He died on December 20, 1944 in Mühldorf as a victim of fascism.

The Eötvös Loránd Society of Physics named a prize after him, thus commemorating his life's work.

- See Hungarian Contribution to Universal Science


Gabor Bernath (b. 1985 Budapest)
Inventor, Child Computer Prodigy: at 15 Invented the commercially viable 3d Scanner, "ScanGuru," and won the 50th Intel ISEF

The handling of three dimensional objects is becoming increasingly important for computers. Gabor Bernath’s goal was simple: deliver a 3D scanning tool at a reasonable price without compromising the quality of the product. Its realization was a little bit complicated. But manage he did. His finished product provides computer users with a means of visual communication that eliminates the use of very complex and expensive scanners. While a video camera films you, ScanGuru calculates all your 3D surface coordinates, and, within seconds, your 3D portrait will be on the screen for all to use. Gabor developed this clever way to use a simple digital camera and light source to capture a 3D model, and in the process created a new category among the 3D input devices for PCs.

In 1999 Gabor won the Computer Science award in the Intel International Science and Engineering Fair (ISEF), the world's largest pre-college science competition, recognizing the world's brightest high school science and engineering students for their scientific achievements with over $2 million in scholarships and grants.

When big-footed Austrian broker Richard Hollmann heard about Gabor's invention, after hearing it had won numerous science competitions, he said he knew it could be used for "all sorts of interesting products," including custom-made shoes. When Gabor first heard Hollmann's suggestion, he didn't know what to make of it. He talked it over with his reluctant father, and they decided to go for it, founding EasyScan Ltd in 1998 and selling 60% of the company to 30-year-old Hollmann in exchange for $50,000. The process for the patent was started and the rights are owned by EasyScan Ltd. In 1999 the Hungarian Foundation for Innovation joined the company.

- See EasyScan Ltd.'s Website or contact them at info@scanguru.hu
- see Business Week


Michael (Mihály) Somogyi (b. Zsámánd, Hungary 3/7/1883 [A.K.A. Reinersdorf, Burgenland, given to Austria after WWI] d. 1971, USA)
Professor, Chemist: Produced first Child Insulin Treatment in US - Developed the "Somogyi test" for the diagnosis of diabetes

Somogyi graduated in chemistry from the University of Budapest in 1905 and then went to America. At first he had trouble finding suitable work, but eventually he obtained a position as assistant of biochemistry at the Cornell University Medical College, New York:, where he was active until 1908. That year Somogyi returned to Budapest to become chief chemist at the municipal laboratory. He obtained a doctorate from the University of Budapest in 1914.

In 1922 a colleague at Cornell University persuaded him to return to the USA to become teacher of biochemistry at the Washington University's medical school in St. Louis. In 1926 he became first chemist at the Jewish Hospital, St. Louis. In 1926, his first year working as a clinical chemist in St. Louis, he introduced a method for determining reducing sugars in human blood. He took a special interest in diabetic patients and in 1938, at a meeting of the medical society in St. Louis to the theme of “unstable, severe diabetic patients,” Somogyi first presented his theory that insulin treatment in itself might cause unstable diabetes. In 1940 he developed a method for the determination of serum amylase in healthy and diabetic individuals. He is also credited with devising a test for acute pancreatitis.

Somogyi was active at the Jewish Hospital, St. Louis, until his retirement in 1957. He died from a stroke on July 21, 1971. 

Trivia:

  • The first insulin treatment of a child with diabetes in the USA on October, 1922, was done with a preparation of insulin produced by Somogyi. 

Associated eponyms:
Somogyi's method
- Dinitrosalicylic acid (DNS) method used to assay for the product sugars.
Somogyi's phenomenon
- Rebound hyperglycaemia to counter regulatory hormone release.
Somogyi's reagent
- A reagent for the determination of sugars.
Somogyi's unit
- A measure of the level of activity of amylase in blood serum.

What is the "Somogyi Effect"?

- See The Spirit of Hungary or Purchase this incredible book! or
- Who Named It.com


Thomas A. Sebeok (Sebők), (b. Budapest, 1921, d. 12/21/2002, Bloomington, Indiana) 
Father of Modern Semiotics (the study of signs and non-verbal communication)

A pioneer in the science of signs and symbols, he was noted for challenging the theory that apes and chimpanzees could learn language to communicate with humans. Dr. Sebeok, a professor emeritus at Indiana University, published more than 60 books in his field, known as semiotics, including the classic "Speaking of Apes" (1979), which he edited with his wife. He argued that apes could not learn language because they lacked the body parts for language, like a larynx or vocal cords, and that they were unable to pass language on to their offspring." Dr. Sebeok showed that nonhuman animals need both the anatomy and nature for learning language," said Dr. Marcel Danesi, a professor of semiotics at the University of Toronto, who has also written extensively in the field. "His work demonstrated that if language were a genetic endowment in apes, then we could just teach them and they would pass it on." When Dr. Sebeok began his career, his field was limited to the study of language. But with the publication of his "Approaches to Semiotics" (1964), he revolutionized that field, expanding it beyond human language to nonverbal communication in all organisms. 

In 1981, the Nuclear Regulatory Commission turned to Dr. Sebeok for help in developing "keep away" signs that could be understood by people in 10,000 years, the duration that nuclear waste may be dangerous to humans. Dr. Sebeok suggested signs with words, pictures, cartoons and stick figures to indicate danger. The signs, he said, should also include a "veiled threat that to ignore the mandate would be to invite some sort of supernatural retribution." Thomas Albert Sebeok was born in Budapest but left to study at Cambridge and then immigrated to the United States, receiving a bachelor's degree at the University of Chicago and a doctorate at Princeton. He next went to Indiana, where he created its department of Uralic and Altaic studies, covering languages of Eastern Europe, Russia and Asia. There, he was chairman of its Research Center for Language and Semiotic Studies, retiring in 1991. Dr. Sebeok held visiting appointments at 33 universities in 17 countries and received the Distinguished Service Award of the American Anthropological Association. He died at his home in Bloomington, Indiana from leukemia.

- See the New York Times or
- Read about him in Hungarian


Antal Bejczy (b. Budapest 1930 -)
Engineer - Developed Mars Rover "Sojourner," and Pathfinder's Remote Control System

Bejczy  worked at the Faculty of Electrical Engineering of the Technical University of Budapest until the anti-Soviet revolution of 1956. Fleeing Hungary, he finished his studies at the University of Oslo, Norway, where he received Ph.D. in Applied Physics in 1963. Following space research with NATO, he eventually established himself in the United States. He was appointed Head of the NASA Telerobotics Development Program in 1969. He led development of The Mars "microrover," dubbed Sojourner. This work was completed with the active participation of fellow Hungary Page honorees Ferenc Pavlics the Hungarian originator of the Moon Rover and Pál Greguss (below) of PAL Optics fame. Bejczy was also the Principal Investigator of a robot arm force-torque sensor and control flight experiment on the Space Shuttle in 1994

Bejczy continues as Senior Research Scientist in the Telerobotics Research Program at NASA's Jet Propulsion Laboratory (JPL) at the California Institute of Technology. His major research interests have been robotics and advanced teleoperation. He is an IEEE Distinguished Lecturer for the Robotics and Automation Society and has won numerous Awards.

- See Hungarian Participation in Space Research or
- Inventor of the Last Decade of the 20th Century


Pál Greguss (b. Budapest 1921 - )
Chemical Engineer and Physicist:  invented the Pál-Optic used in NASA's Deep Space Program

This invention is a panoramic lens and is among the instruments of the space probe launched within the Deep Space Program. While it takes the Sojourner 6000 photographs to assemble a panorama picture, the Pál-Optic is able to do so in ONE. This lens provides a 360° vision of the Earth, the Sun and the Moon simultaneously, and therefore it can be used to determine the exact location of the space probe.

Pal Greguss is currently Professor Emeritus at the Budapest University of Technology and Economics. Some of his recognition includes: The Pioneer Award in Medical Ultrasonics from WFUMB (World Federation of Ultrasound in Medicine and Biology) and AIUM (American Institute of Ultrasound in Medicine); and NASA’s Certificate of Recognition for Radial Metrology that was based on his invention, the PAL-optic. For the same invention and its applications he received the “Invenció ’91” Award from the Hungarian Association of Inventors, the Genius ‘96 Oscar Award. For his further developed version, the “Humanoid Machine Vision System in Space, on Earth and Under Water,” he won the Gold Medal of the 1st Inventors' Olympic Games - Genius' 98. He is author of over 330 scientific publications including several books, and owner of more than 20 patents all around the world.

- See the Hungarian Folklore Museum or
- Read more about him in Hungarian at the Budapest University of Technology and Economics: greguss@manuf.bme.hu


Ferenc Pávlics - (b. 1928 Balozsameggyes, Hungary)
Engineer - Developed NASA's Moon Rover and Directed Development of the Mars Rover

Frank Pavlics, mechanical engineer, worked as a researcher at the headquarters of the armored vehicle arsenal of the US army in Detroit, at the defense research laboratory of General Motors and at the electronics division of the Santa Barbara Plant. He conducted research regarding the improvement of vehicles designed to travel on rough terrain and the use of vehicles designed for travel on the surface of the Moon. He developed for NASA the first vehicle in history which traveled on extraterrestrial terrain, the moon rover, used on the Moon by the Apollo 11 expedition in 1969. The rover, known as Newcomer, was improved by NASA under Pavlics' direction, and landed on Mars in 1997 with the space probe named Trailfinder.

- See Hungarian Participation in Space Research


János András Segner (b. 1704, Pozsony, Hungary [now Bratislava after Slovak annexation], d. 1777, Halle, Germany )
Father of the Water Turbine: First scientist to use reactive force and made substantial contributions to the theory of Dynamics.

The first scientist to use the reactive force of water was the Hungarian who constructed the first water-jet, the Segner-Wheel. When we turn on our sprinklers in the garden, we should remember Segner, who also produced, among other things, the first proof of Descartes' theory of signs. Historians of science remember him as the father of the water turbine.

Segner attended school at Pozsony's Lyceum where he showed special talents for medicine and mathematics. In 1725 he entered the University of Jena, studying medicine there. He did not find being a doctor of medicine to his liking and he returned to the academic world accepting a chair at the University of Jena. He had the great distinction of becoming the first professor of mathematics at Göttingen taking up the chair in 1735. Segner's was therefore the first to fill what was to become one of the foremost chairs of mathematics in the world. In 1743 Segner was put in charge of the construction of the university observatory which was finished in 1751.

Segner's wheel established the basic principles on which the jet turbine was developed decades later. It works on the principle of a stream of water coming out of a cylinder which at its lowest part has several horizontal paddles bent in one direction. The water streaming through the paddles produces a counter-pressure able to turn the cylinder in the opposite direction.

- See Segner for more
- See The Spirit of Hungary or Purchase this incredible book!


Les Besser (b. 8/27/1936, Budapest)
Engineer: “Father of microwave computer-aided design" - Microwave Engineering

Les (Laszlo) Besser, was national under-16 year hurdle record holder in 1952, graduated from Kando Kalman technical school in 1954, and won two Hungarian national junior championships in 1955. Escaping to Canada after the 1956 revolution, he continued with his running career, and received a track scholarship to study electrical engineering in the US. At the University of Colorado he received the Pacesetter Award and was selected to be “The Outstanding Engineering Student” and co-captain of the school’s soccer team in 1966.

After gaining practical engineering experience at Hewlett Packard and Fairchild corporations, he authored COMPACT (Computerized Optimization of Microwave Passive and Active CircuiTs), the world’s first commercially successful microwave circuit optimization routine, soon to become the industry standard. He then founded Compact Software, a pioneer CAD software company (now part of Ansoft), and was active in serving the engineering design needs of the RF/Microwave industry during the next ten years. In 1980, his company merged with Communication Satellite Corporation (COMSAT) where Dr. Besser functioned as a Senior Vice President.

In 1985, recognizing the need for advanced continuing education, he started Besser Associates, a training organization that has provided live training to more than 45,000 engineers, managers, and technicians world-wide, retiring from the company in 2004. In addition to directing the company, he presented short courses at various technical conferences and universities, including UCLA, Stanford, MIT, Cambridge (UK) and Oxford (UK). He is a Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE). In 1983 he received the IEEE group’s "Microwave Applications Award," and "Career Award" in 1987, as well as the prestigious IEEE “Third Centennial Medal" in 2000. His recently coauthored textbooks, Practical RF Circuit Design for Modern Wireless Systems, Volume I and II, are on the publisher’s best-seller list. He is also listed in Marquis' "Who Is Who in the World," and was elected to the Microwave Hall of Fame. You can learn more about Les and the history of microwave Computer-Aided Design (CAD) on:

- http://www.microwaves101.com/encyclopedia/halloffame3.cfm#besser
- http://www.microwaves101.com/encyclopedia/historyCAD.cfm


István Dorogi (b. Hungary, 1885 - ?)
Chemical Engineer / Inventor: Father of Mass Produced Inflatable Toys, Forms and Figures!

Istvan Dorogi was a chemical engineer and inventor. Between 1929 and 1934, he developed a process for the industrial mass production of inflatable formes/figures made of rubber. For this procedure he obtained 52 Hungarian and 150 international patents. The solutions and methods he developed are widely used in the modern rubber industry to manufacture inflatable toys, boats, life-savers, etc.

- See the Hungarian Folklore Museum


Móricz Kohn Kaposi (b. 10/23/1837 Kaposvár, Hungary, d. 1902 Vienna, Austria)
Physician and Dermatologist: Described Kaposi's Sarcoma

Moritz Kaposi was born Moriz Kohn to poor parents. He attended a Hungarian elementary school and received the first four years of secondary schooling in his native city. He then moved to Pozsony (Pressburg, Bratislava) to complete the remaining four years of education in the German school in that City. Thereafter, Kohn went to Vienna where he enrolled in the Vienna University Medical School in 1856 and from which he graduated as a doctor of medicine on 13 December, 1861, as doctor of surgery on 14 April, 1862, and as master of obstetrics on 12 July, 1866. immediately was appointed assistant to Ferdinand von Hebra (1816-1880), the noted Austrian dermatologist. He worked with Hebra from 1862 to 1867 and fell in love with and later married Hebra's daughter. As Hebra was Catholic and Kohn Jewish, he converted to Catholicism and changed his name to Kaposi – a play on his place of birth, Kaposvár. After his father-in-law's death, he took over the University's Department.

Kaposi (Kaposy) conducted significant research in the fields of malignant tumors and venereal diseases. While working at the Vienna General Hospital, he described odd skin tumors in five men in their sixth and seventh decades of life as "idiopathic multiple pigmented sarcoma of the skin."  Since these initial findings, four main types of Kaposi's Sarcoma (KS), also termed "multiple idiopathic hemorrhagic sarcoma", have been documented. The most common form, that associated with Acquired Immunodeficiency Syndrome, has been well documented since first described in the early 1980's.

Much has been written over the last century about Kaposi and similarly, the dermatological entities we associate with his name have been much commented upon e.g. lupus erythematosus, the Kaposi sarcoma, Xeroderma pigmentosum, and several others. Many honors were bestowed upon Kaposi. He became a member of the imperial Order of (Emperor) Leopold; he was appointed "Hofrath", officer of the Légion d'Honneur elected member of many other national and international scientific bodies. Kaposi was a polyglot, being fluent in Hungarian, German, French, and English. At international congresses he was sought as a speaker, but he was also a sharp critic, feared for his caustic remarks. He was well integrated into the Viennese society of the time and was a friend of many artists, e.g., the famous painter Makart who also was his patient and who did a portrait of his wife, and the sculptor Kundmann who created the statue crowning the Kaposi tomb, for which Kaposi's wife Martha served as model.

- See the Hungarian Folklore Museum or
- WhoNamedIt.com or
- Learn about Kaposi's Sarcoma at the University of Bonn or
- Read a biography at the University of Paris


Béla Schick - (b. 7/16/1877 Balatonboglár, Hungary - d. 1967, USA)
Pediatric Doctor / Researcher: Pioneer in immunology - Devised the "Schick test" for determining susceptibility to diphtheria.

Schick became assistant at the Children's Clinic in Vienna, and later associate professor of pediatrics at Vienna University.

He emigrated to the United States, and in 1923 became pediatrician-in-chief at New York's Mount Sinai Hospital. He later (1936) was appointed clinical professor of pediatrics at Columbia University. Schick made important studies on scarlet fever, tuberculosis, and the nutrition for infants ... but gained international renown for the Schick Test. This test determined susceptibility to diphtheria, and eventually led to the eradication of the childhood disease that attacked 100,000 Americans in 1927, leading to about 10,000 deaths.

A massive five-year campaign, coordinated by Dr. Schick, virtually eliminated the dreaded disease that had taken countless young lives since it was first mentioned in the sixth century writings of Aetius. As a part of the campaign, 85 million pieces of literature were distributed by Metropolitan Life Co. with an appeal to parents to "Save your child from diphtheria." These illustrated brochures (reproduced here) were created by a talented young artist who had recently emigrated from Germany - Gerta Ries. Remarkably, this same Gerta Ries (Wiener) was commissioned over 75 years later to create the sculptured tribute to Dr. Béla Schick for the Jewish-American Hall of Fame.


Sándor (Alexander) Pfitzner (1880-1910) 
Engineer: Designed the first American Monoplane for Curtiss

Became a constructor at the Herring Curtiss Aeroplane Factory. He took off with his originally-designed plane in Hammondsport, on December 20, 1909 and this was the first successful flight of a monoplane in the United States, where only bi-planes had been in use thus far. He tragically committed suicide at the age of 30. Little is known about him: please send information to hipcat@hungary.org.

- Read more at Hungarians in Transportation


Frigyes Riesz - (b. 1/22/1880, Györ, Hungary, d. 2/28/1956 in Budapest)
Mathematician: A founder of functional analysis

His younger brother and fellow renowned mathematician Marcel Riesz, introduced the Riesz means. Riesz was a founder of functional analysis and his work has many important applications in physics. 

Riesz was appointed to a chair in Kolozsvár in Hungary in 1911. However, the Hungarian government was forced to sign the Treaty of Trianon on 4 June, 1920. Hungary was left with less than one third of the land that had previously been Hungary. Romania, Czechoslovakia and Yugoslavia all took over large areas but Austria, Poland and Italy also gained land from Hungary. Kolozsvár was no longer in Hungary after the Treaty of Trianon but rather it was in Romania and was renamed Cluj, so the Hungarian University there had to move within the new Hungarian borders and it moved to Szeged in 1920, where there had previously been no university.

In Szeged in 1922 Riesz set up the János Bolyai Mathematical Institute in a joint venture with Haar. Of course the Institute was named after the famous Hungarian mathematician whose birthplace was Kolozsvár, the town from which the university had just been forced to move after the French awarded Transylvania and the Banat to the Rumanians. In 1945 Riesz was appointed to the chair of mathematics in the University of Budapest. Riesz received many honours for his work. He was elected to the Hungarian Academy of Science and, in 1949, he was awarded its Kossuth Prize. He was elected to the Paris Academy of Sciences and to the Royal Physiographic Society of Lund in Sweden. He received honorary doctorates from the universities of Szeged, Budapest and Paris.

- See more at Riesz or Hungarian mathematicians and physicists


Imre Gyula Izsák, (b. 2/21/1929 Zalaegerszeg, Hungary, d. 4/21/1965, Paris)
Astronomer: the Hungarian-American expert of celestial mechanics of the Space Age.

After the defeat of the 1956 revolution, three extremely talented young astronomers left Hungary: Tibor Herczeg, Imre Izsák (1929-1965) and István Ozsváth. Among those who left, Károly Lassovszky represented the older generation. He found a niche for himself at Harvard, one of the scenes of his youth. He was soon joined by Izsák. Both have been held in great respect by their colleagues for establishing a new and improved mathematical method for calculating the orbit of artificial satellites. Imre Izsak and fellow Hungarian Victor Szebehely worked in the field of celestial mechanics and contributed significantly to map the gravitation field of the Earth using the orbital perturbations of satellites. Izsak computed the orbits of American and Soviet ballistic missiles. Izsak utilized the observed orbits of artificial satellites to calculate the exact shape of the Earth.

Izsak died of a sudden heart attack on his way to a geodesic satellite symposium in Paris. There is a crater on the moon honoring Imre Izsák.

- Read more in Hungarian
- See all 9 Hungarian-named Craters on the moon


Victor Szebehely (b. Szebehelyi Gyozo, 1921, Budapest, d. 9/13/1997, Austin, Texas)
Aerospace Engineer: Pioneer of Orbital Mechanics and a key figure in the Apollo Space Program: "His work got us to the moon"

Victor Szebehely was educated in Budapest and received a Master of Science in Mechanical Engineering in 1943 from the Budapest Technical University and a Doctor of Science in Engineering from the same university in 1946. Victor's Ph.D. thesis dealt with an analysis of the three body problem and therefore foreshadowed his later work on this most important subject. After the communist takeover of Hungary, he left for the U.S. in 1947.

While waiting to become a U.S. citizen he served as Associate Professor of Applied Mechanics at Virginia Polytechnic Institute. He also held visiting and temporary posts at the University of Maryland and George Washington University. Upon becoming a U.S. citizen in 1954, Victor went to work for the U.S. Navy in Washington, D.C. at the David Taylor Model Basin where he headed the Ship Dynamics Branch. Here, his work on the motion of small warships in heavy seas brought him international recognition. In 1956, he was awarded the Distinguished Order of Merit by the Government of the Netherlands for applying these results to the behavior of their naval vessels under the stormy conditions that exist in the North Sea. In 1956, a dimensionless number used in time-dependent unsteady flows was named “Szebehely’s number,” and in 1957, he was knighted by HRH Queen Juliana of the Netherlands.

At the beginning of the Space Age, his expertise in the three-body problem, obtained in Budapest, was warmly welcome. In 1957, Victor Szebehely began his work on the U.S. Space Program as a Manager of Space Mechanics at the General Electric Missiles Space Division near Philadelphia. For the next six years he worked on a number of programs of importance to the U.S. Space exploration effort. It was here that he began to apply the methods of treating the three body problem he had developed as part of his thesis work to the problem of going to the Moon. In 1963, Victor moved to Yale University as Associate Professor of Astronomy and he continued his work and the application of the restricted three body to the Apollo missions in the group headed by Dirk Brouwer. He served on the Yale faculty until 1968 and then he moved to Texas to assume a position as Professor in the Department of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin. In the September and October 1977 issues of the journal Celestial Mechanics, volume 16, an equation used to determine the gravitational potential of the earth, planets, satellites and galaxies was named “Szebehely’s equation. ”

"He could apply the science of mechanics with great imagination to a specific problem," said Hans Mark, former deputy administrator at NASA. "His work got us to the Moon."

In 1983, he was appointed to the R.B. Curran Centennial Chair in Engineering at the University of Texas, Austin. In Austin, Victor continued his work on celestial mechanics which involved the development of methods to navigate spacecraft to the Moon and to other planets in the solar system. In doing this work, he developed relationships with NASA's Jet Propulsion Laboratory and the NASA-Lyndon B. Johnson Space Center, which have the missions of developing and operating spacecraft for planetary exploration and developing spacecraft to carry people, respectively. He made important contributions to the development of both of these institutions.

He was the author of several books. His first book, The Theory of Orbits, is an important text on orbital mechanics. His first marriage, to Eva Szebehely, ended in divorce, as did his second to Patti Gill Szebehely. In addition to his wife, he is survived by a daughter from his second marriage Julia Agnes Szebehely of Webster, Texas.

- Read "In Memorium" at the University of Texas
- See the New York Times obituary


Péter Gergely (b. 1936 Budapest , d. 1995 Ithaca, New York)
Architect and Structural Engineer: Founder of the National Center for Earthquake Engineering

Peter Gergely completed his studies in Hungary, Canada and the United States and received his Ph.D. in 1963. He fought as a University National Guard in the Hungarian Freedom Fight of 1956 and escaped to the US from the Soviet invasion. For 32 years he was a professor at Cornell University. From 1983-88 he was chair of the Department of Structural Engineering and from 1985-88 director of the School of Civil and Environmental Engineering. 

Gergely's research and discoveries, published in over 100 scientific papers, led to significant advancements in understanding the mechanics of reinforced and pre-stressed concrete and its application to building codes. He also made pioneering contributions in structural dynamics and earthquake engineering. His discoveries provided answers to many previous problems that occured in areas of moderate seismicity. His improved building codes for structures, especially nuclear plants in earthquake zones are used on a national level. Much of his discoveries were realized through the National Center for Earthquake Engineering which he helped found. He volunteered in many scientific associations and received six international awards. In 1992, Gergely, a dedicated Hungarian, received an honorary doctorate from the Technical University of Budapest for his international activities in the advancement of the construction industry and improvement of reinforced concrete.

- See Hungarian Inventors


Alfred Haar -(b. 10/11/1885 Budapest, d. 3/16/1933 Szeged, Hungary.)
Mathematician: Introduced a measure on groups, now called the Haar measure, used by von Neumann, and other notables

In 1903, in his final year in school, Alfréd Haar won first prize in the Eötvös contest in mathematics. Haar travelled to Germany in 1904 to study at Göttingen and there he studied under Hilbert's supervision, obtaining his doctorate in 1909.

Haar then taught at Göttingen until 1912 when he returned to Hungary and held chairs at the university in Kolozsvár (which is now Cluj in Romania), Budapest University and Szeged University. In fact after Word War I Kolozsvár was no longer in Hungary, so the University there had to move within Hungarian borders and it moved to Szeged, where there had previously been no university. Haar, together with Riesz, rapidly made a major mathematical centre from the new university. In 1932 he introduced a measure on groups, now called the Haar measure, used by von Neumann, and other notables. 

- For more visit: Haar or Hungarian mathematicians and physicists


Rudolf Emil Kálmán - (b. May 19, 1930, Budapest)
Mathematician: Developed the Kálmán Filter which is the "greatest discovery in statistics in our century." Kalman filtering is also the method used in GPS (Global Positioning Systems) for navigation. 

Kalman emigrated to the US in 1943 and received the bachelor's and master's degrees in electrical engineering, from the Massachusetts Institute of Technology in 1953 and 1954 respectively. He received the doctorate degree (D. Sci.) from Columbia University in 1957. In the early years of his career he held research positions at IBM and at the Research Institute for Advanced Studies in Baltimore. From 1962 to 1971, he was at Stanford University. In 1971, he became a graduate research professor and director of the Center for Mathematical System Theory at the University of Florida, recently retiring with emeritus status. 

Kalman's contributions to control theory and to applied mathematics and engineering in general have been widely recognized. In 1985, he was one of four recipients of the Kyoto Prize, inaugurated in that year by the Inamori Foundation of Japan. The Kyoto prize, which in 1985 carried a cash award of 45 million yen (then about $200,000), is sometimes referred to as the "Japanese Nobel prize." It recognizes "outstanding intellectual or creative activities which have significantly enriched the human experience." Kalman received the prize in the field of advanced technology. Among the other honors Kalman has received are the Institute of Electrical and Electronics Engineers' highest award, the Medal of Honor (1974), and the American Mathematical Society's Steele Prize (1986), which recognized the fundamental importance of the papers on linear filtering Kalman published in 1960 and 1961. Kalman is a member of the French, Hungarian, and Russian Academies of Sciences and of the National Academy of Engineering, and is a Fellow of the American Academy of Arts and Sciences.

Read more at: Kálmán I or Kálmán II or learn about the Kalman Filter


Arthur Erdélyi - (b. 10/2/1908, Budapest, Hungary, d. 12/12/1977 Edinburgh, Scotland)
Mathematician - His works are cited as "the most widely cited mathematical works of all time and a basic reference source for generations of applied mathematicians and physicists throughout the world.

Erdelyi attended primary and secondary schools in Budapest from 1914 to 1926. He went to Brno, Czechoslovakia to study electrical engineering. However, after winning prizes in a mathematics competition in his first year he was persuaded to study mathematics. He began research in mathematics and his first paper was published in 1930.

By the end of 1936 Arthur had 18 papers in print, another 11 appearing in 1937. Arthur wrote no doctoral thesis, he merely matriculated at the University of Prague, and submitted his papers instead of a thesis. He was awarded a doctorate in 1938 but because of the Nazi invasion of Czechoslovakia he was told he had to leave the country by the end of 1938 or be sent to a concentration camp. He made it to Scotland where he held a research grant from Edinburgh and later became a lecturer there. 

In 1947 Erdélyi arrived in Caltech as a Visiting Professor. After returning to Edinburgh for session 1948/49 he resigned in 1949 to take up a chair in California. At Caltech Erdélyi headed a team which produced 3 volumes of Higher Transcendental Functions and 2 volumes of Tables of Integral Transforms.  

In 1964 he returned to Edinburgh where a second chair of mathematics had been created to provide leadership since Aitken was in very poor health. He remained in Edinburgh until his death, continuing a steady stream of high quality papers up to the time of his death. A list of 178 mathematical papers and articles. Erdélyi received many honours, the most prestigious being elected a Fellow of the Royal Society in 1975.

To see more, visit the Mathematical History Archive: Erdélyi


Madeleine Forró Barnóthy (b. Zsámbok, Hungary 1904, d. Chicago, Illinois 1993)
Astrophysicist, Pioneer in the study of Cosmic Radiation, Bio-Magnetism and Magnetic Therapy, first Woman to earn a doctorate in physics in Hungary!

Barnothy studied in Budapest and Göttingen, Germany. In 1928 she earned her doctorate in physics. From 1928 to 1948 she was a physics professor at the Budapest University. In 1948 she settled in the USA with Jenö Barnóthy, her husband and fellow scientist. First she taught physics at the Barat College in Lake Forest, Illinois. In 1955 both Barnóthy's were asked to lead a company which manufactured radiological research instruments. At the same time (1953-1959) Madeleine Forró Barnóthy was also teaching physics at the University of Illinois.

Barnothy specialized in cosmic radiation, astro and nuclear physics and biomagnetism. She was the author of over 150 scientific papers and editor of the two-volume book Biological Effects of Magnetic Fields (1964). Already in 1964 Dr. Madeleine F. Barnóthy predicted that the magnetic field will in due time develop into a powerful new analytic and therapeutic tool of medicine. Her last scientific article concerning astronomy (What is Time?), co-written with husband Jenö Barnóthy, was published in 1991, two years before her death. She was a member of numerous American and international scientific associations. Forró Barnóthy was a pioneer in the research of the phenomena of cosmic radiation, a prerequisite for conquering the universe.

- See Hungarian Inventors
- Read about Electromagnetic Healing


George Pólya - (b. 12/13/1887 Budapest, d. 9/7/1985 Palo Alto, California)
Mathematician: "The Great Teacher"

Polya worked in probability, analysis, number theory, geometry, combinatorics and mathematical physics. He left Hungary for Brown University for two years and later took up an appointment at Stanford. He enjoyed the esteem of the mathematical community not only for his deep and influential contributions in a variety of mathematical fields, but also for his groundbreaking work in the teaching of mathematics. His standing in the latter area could rest solely on his having written one of the most widely read books in mathematics, the still-popular How to Solve It. Various other books were almost equally influential, however: Mathematical Discovery and Mathematics and Plausible Reasoning, to name but two.

In addition to his championing problem-solving, he contributed to mathematics important results in complex and real analysis, inequalities, mathematical physics, combinatorics, probability theory, number theory and geometry. He coined the phrases "random walk" and "central limit theorem" and gave to mathematics the Pólya Enumeration Theorem, along with many other ideas used widely today.

- For more: Pólya (you can even buy a T-Shirt with his "necklace theorem") or
- Review and buy an biography, "Random Walks of  George Polya"


Alfréd Rényi - (b. 3/30/21 Budapest, d. 2/1/70 Budapest)
Mathematician. Discovered "one of the strongest methods of analytical number theory." 

His scientific work covers almost all of mathematics; he has made relevant contributions in all branches, and was founder of the Hungarian Probability Theory School. His research departed from Number Theory. Known by the nickname of Buba, he is best remembered for proving that every even integer is the sum of a prime and an almost prime number (one with only two prime factors). He finished his studies in Budapest. After graduation he won a competition in Greek language, and from 1940 on he was a student of Lipót Fejér in Budapest. During Word War II he was in a labor camp. He finished his PhD studies in Szeged under Friedrich Riesz in 194. He is also remembered as the author of the anecdotes:

"A mathematician is a machine for converting coffee into theorems"

"If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathematics to keep happy"

Renyi was the founder, and for 20 years the director, of the Mathematical Institute of the Hungarian Academy of Sciences. He was a famous raconteur remembered for many performances of his dialogue, which he spoke with his daughter, on the nature of mathematics. He received the Kossuth Prize twice (1949, 1954).

- For more, visit: Rényi or www.renyi.hu
-
  See the Alfréd Rényi Institute of Mathematics at the Hungarian Academy of Sciences


Paul Turán - (b. 8/28/10 Budapest, d. 9/26/76 Budapest)
Mathematician: Erdos's closest friend and collaborator and Great Hungarian number theorist

Turán's first work was on probabilistic number theory and in 1938 he produced the sum-power method. He died of cancer with his wife at his bedside. She reported that the last words he murmured were "Big Oh of One." Mathematicians tell this story with awe and inspiration as he was doing number theory to the very end!

For photo and more visit: Turán


Gabor Szegö - (b. 1/20/1895 Kunhegyes, Hungary, d.: 8/7/85 Palo Alto, California)
Mathematician: Head of University of Stanford Mathematics 

Szego received his Ph.D. in Vienna in 1918.  After teaching at the Technical School of Budapest and the University of Berlin, he went to the University of Koenigsberg where he was Professor of Mathematics from 1926 to 1934.   With the rise of anti-Semitism in Germany in the 1930's, it became necessary for him to leave.  By this time an analyst of great stature,  he was offered a temporary position at Washington University in 1934.  

During the years 1934-1936, he was supported by a Rockefeller Foundation Grant, matched by The Emergency Committee in Aid of Displaced German Scholars, and for the next two years by contributions from local philanthropists.  Szego remained at Washington University until 1938, when he accepted an offer to become Head of the Mathematics Department at Stanford.  Szego remained at Stanford until his retirement in 1960. Szegö's most important work was in the area of Orthogonal Polynomials and Toeplitz matrices. 

The bust in Stanford's courtyard is one of two copies of the original sculpture (located in front of the Town Library in his city of birth, Kunhegyes, Hungary).  Contributions from mathematics alumni and faculty made the bust possible, and it was dedicated in a ceremony on May 8, 1997.  The other copy of the original is at Stanford University. 

- For more: Szegö


József Petzvál (b.1807 in Szepesbéla, Hungary, now called Spisska Bela in Slovakia; d.1891 in Vienna, Austria)
Inventor: A Founder of Photography: His Work allowed for construction of modern cameras and made practical portrait-photography possible. Invented Photographic Objective Lens, Darkroom, Opera Glass, and perfected the telescope

Petzval is best remembered for his work on optical lenses and lens aberration done in the early 1840's (Petzval curvature is named after him) which allowed the construction of modern cameras. Petzval produced an achromatic portrait lens that was vastly superior to the simple meniscus lens then in use. The Petzval lens, though a very old design form, is still a mainstay in lens libraries. 

There are different versions of Petzval's name, and, in addition to the one given here, he is often known as Jozef Maximilian Petzval. Jozef was the son of a schoolmaster and he attended school in Levoca (original Hungarian name needed) and Kassa (now Kosice after Slovak annexation). In 1826 he entered the University of Pest to study philosophy and mathematics. Petzval became an assistant at the University of Pest in 1835. Then, two years later, he accepted a chair of mathematics at the University of Vienna. At the University of Vienna he studied in detail Daguerre's invention, the so-called daguerreotype, and took on shortening its exposure time from minutes to seconds. 

A tragic story:
A colleague suggested Petzval design a new camera lens to compete in a prize competition. Petzval initially resisted (precisely as Ernst Abbe was to resist Carl Zeiss's similar suggestion a generation later) but soon relented and began work. Petzval obtained the assistance of three corporals and eight gunners from the Austrian army at the direction of Archduke Ludwig, then Director-General of Artillery, to aid in his calculations. Within six months, the design was completed and took the photographic world by storm. In 1840, his extraordinary mathematical talent allowed him to assess and build an anastigmatic with six times greater luminosity. 

Petzval knew Peter Wilhelm Frederich Voigtlander, then head of a small optical shop, who began producing the lens. Voigtlander refused to render an accounting to Petzval, and the two men had a falling out in 1845. Petzval began grumbling about having been cheated, so Voigtlander opened a branch operation in Braunschweig, in the Germanies, in 1849, where the Petzval lens was produced in great quantity, some 60,000 lenses being made in the first twenty years of production. Petzval turned to another optical house, that of Dietzler, in 1854. Petzval only held an Austrian patent, so the Petzval Portrait Lens was made simultaneously in Vienna by Dietzler and by Voigtlander in Braunschweig; Habsburg law did not run into the Germanies by this date, so Voigtlander could operate with some immunity in Braunschweig. Deitzler failed in 1862, and Petzval seems to have threatened to take the matter to law, so Voigtlander closed his Austrian operations in 1866, clearly in great favor with the Habsburg court, as he was accorded the "von" moniker in that same year. The end result was that Petzval lived until 1891, an embittered and impoverished man who had completely turned his back on optics; PWF Voigtlander retired in 1876 and died old and rich two years later, having seen his firm expand from a small optical shop to a major industrial enterprise upon the grand success of the Petzval lens. His son, Friedrich Ritter von Voigtlander, was the last family member to run the business; when he died in 1924, his five daughters became the owners and sold the concern to the Schering drug company, who, in turn, sold it to Zeiss in 1950.

Trivia:

  • Petzval also perfected the telescope and designed the opera glass. 
  • There is a Crater Petzval on the moon! Named in memory of the mathematician, professor and inventor at the University of Vienna. With his Petzval lens many minor planets were discovered by means of this portrait design at the end of the nineteenth century.
  • He is buried at Zentralfriedhof (Central Cemetery) in Vienna along with Beethoven, Brahms, Mozart.

A street in Vienna bears his name as does a crater on the far side of the Moon

- Nice detail on Scribblers-Inc or
- Visit Petzval at St. Andrews University


János Kornai
Economist, Harvard Professor: Developed the "economics of shortage" theory

Kornai's distinguished career in economics reflects a unique combination of East-West experiences. Born and educated in Hungary, Professor Kornai was an early critic of centralized economies. His PhD dissertation, entitled ‘Overcentralization’, written before and published after the 1956 Hungarian Revolution by Oxford University Press, was the first critical book on the command economy written by an ‘insider’.  The work caused considerable controversy in Hungary and elsewhere, and Professor Kornai lost his job in Hungary as a university professor because of it. Yet, he continued to live and work in Hungary, and is respected both for his decision to remain there and for his many contributions since then to economics in general and to the Hungarian transition in particular. 

His most influential book on the subject was The Economics of Shortage, which demonstrated that chronic shortages are not consequences of planners’ errors or the wrong prices, but rather inevitable consequences of the traditional, ‘classical’ communist system. The book has been translated into many languages – in China it has sold over 100,000 copies. Over the years, Professor Kornai has written a series of books questioning general equilibrium theory and analyzing economic shortage and the communist system. In light of the recent social and economic changes in Central and Eastern Europe, much of his written work has turned out to be prophetic.

Professor Kornai joined the faculty of Harvard University on a part-time basis in 1986 and was named the Allie S. Freed Professor of Economics there in 1992. His ties to Hungary remain strong: In 1992, he became a Permanent Fellow of the Collegium Budapest, Institute for Advanced Study; and, since 1967, he has been a Research Professor at the Institute of Economics, Hungarian Academy of Sciences. He has been President of the Econometric Society and the European Economic Association. He is a Member of the Hungarian Academy of Sciences and of five other Academies. He has received the highest Hungarian prizes for scholarship, as well as the Seidman Award (USA), and the Humboldt Prize (Germany); he has also been made an Officier of the Legion d'Honneur.

- Read More or
- Read the interview: "Turning Visions into Reality"


Kornél Szilvay
Officer in the Fire Brigade: Father of the Dry Fire Extinguisher!

Kornel Szilvay patented his dry extinguisher in 1923. This device sprayed a powder (sodium bicarbonate) onto the fire with compressed inert gas. His equipment came on the market in 1925.

- See "Innovators and Innovations"


Kálmán Tihanyi (b. 4/28/1897 d. 2/26/1947)
Physicist: Father of the Picture Tube and Television Pioneer (NOT Zworykin) - Invented the Picture Tube (Iconoscope), Infrared-sensitive (night vision) television, and Flat TV Tube

Born in Uzbeg, Coloman Tihanyi studied electrical engineering and physics in Pozsony (now Bratislava after Slovak annexation) and Budapest. His most important inventions - bought and developed by RCA, Loewe, and Fernseh AG - concerned the design of the cathode ray tube for television.

He patented his fully electronic television system in 1926. Though superficially similar to such earlier proposals, it represented a radical departure. Like the final, improved version he would patent in 1928, it embodied a new concept in design and operation, building upon a phenomenon that would become known as the "storage principle." The invention was received with enthusiasm by Telefunken and Siemens, but in the end they opted for continued development of mechanical television. 

RCA approached Tihanyi in 1930, after the publication of his patents in England and France. Negotiations continued until 1934, when RCA, ready to unveil its new television system based on Tihanyi's design, purchased his patents. These covered controlling features that the U.S. patent examiners, citing Tihanyi's prior publications, had denied Zworykin's 1930 - 31 applications. U. S. patents assigned to RCA were issued to Tihanyi in 1938-39 with 1928 priority. Now it is became clear that the originator of this pivotal invention was Kalman Tihanyi. Tiahnyi's device was manufactured from 1930 on for transmitting television programs. Charge-storage has remained the basic principle of modern television. In 1939 he submitted a patent application in England for the flat TV tube. 

- See Memory of the World Register at Unesco with history and details on his patents
- Read the 1998 "Electronics World" article, "Rewriting History" about the truth behind RCA and the Picture Tube
- See "Innovators and Innovations" or
- Hungary.com


Miksa Herz
Architect -
known in Egypt as Pasha Herz...

Played the greatest role in the architecture of Egypt in general and in that of modern Cairo in particular. The Egyptian Museum, visited by millions of people every year, stands out among the many public buildings designed by him on his own or together with the Frenchman Eiffel.

Born on 19 May 1856 in the Romanian town of Otlaka, Herz was the son of a tiller of the soil. After graduating from the school of architecture in Vienna, Herz visited Egypt in 1881 for the first time. The following year he joined the Egyptian service as an architect for the Department of Waqf (Endowment Authority) bringing him in close contacts in what would become his forte: Islamic architecture and mosques.

In 1888, Herz was nominated to the prestigious Comité de Conservation des Monuments de l'Art Arabe. Two years later, he succeeded Julius Franz Pasha as Director of the Islamic Art Preservation Committee. Herz was also responsible for putting together the Egyptian pavilion at the Chicago Universal Exhibition of 1892. That same year, he was asked to supervise the cataloguing of the contents of the National Museum for Islamic Art. The museum was re-inaugurated in 1903 with Herz at its head.

In 1895 Herz was made a 'Bey' and henceforth known as 'Herz Bey' until his elevation to 'Pasha' in 1910. But like all citizens of the Austro-Hungarian Empire, pashas notwithstanding, Herz was made to resign all his functions in 1914. England was at war with Germany and Austria, and Egypt had been unilaterally proclaimed a British Protectorate.

During his Egyptian career Herz Bey wrote about, was involved with, and responsible for, the restoration, design and creation of the following Islamic buildings: The Mosque of Sultan Hassan, the Rifai Mosque, and the Sultan Qalawun. Civil works in which he may have participated include: the Zogheb Villa which became the Danish Legation and the, the villa of St. Maurice (later the French Legation) both located in Cairo's Ismailia district, not too far from the Credit Foncier Egyptien. Webmaster

- See the The birth and achievements of Hungarian oriental studies


Count Ede László Almásy (b. Borostyanko, Hungary 1895 [now called Bernstein after Austrian annexation], d. 1951, Salzburg)
Explorer, Double Agent! Immortalized in "The English Patient"

Almasy exhibited a penchant for new technology early on as he was already an aviation pioneer and expert driver by the age of 17. By the age of 20 he was a pilot in the Austro-Hungarian Air Force. Almasy ran several car and plane expeditions to Africa in the 1920s and 30s. He engaged in exploring the Sahara desert, carried out cartographic surveys, and also discovered prehistoric cave paintings. His name is preserved to the present day by an airport near Cairo. During World War II Almasy served on the staff of Field Marshall Erwin Rommel as head of a group of desert scouts. Rommel also entrusted him with various intelligence missions, one of which was the exploit at the heart of the novel The Eye of the Needle by Ken Follett. 

When the Hungarian arrived in North Africa in 1926 he was 31 and penniless, a bitter survivor of World War I in which he had served with the defeated Austro-Hungarian air force. In North Africa, the count's only asset was a connection with some wealthy Egyptian princelings whom he had met on shooting parties in Hungary. They were keen to enjoy some hunting and adventure in the desert to the south of their country, and turned to the veteran pilot for help. Despite his boy-scout looks, Almasy loved  intrigue. In the 1930s Almasy offered his services to British intelligence, but was turned down because he was suspected of being pro-German. He then started passing his hand-drawn maps to grateful officers of Mussolini's army in Libya. By 1940, he was fully involved with the Abwehr - German military intelligence - and proposed a plan directly to its chief in Berlin to provoke an uprising in British-occupied Egypt, led by a local pasha who was one of his pre-war contacts. The plan came to nothing when the pasha crashed his plane into a palm tree as he headed to Germany for his briefing. By the summer of 1942, Rommel's Afrika Korps was pushing to within hours of Cairo, and the count seized his chance to impress with his boldest plan yet. He would motor with a small convoy 3370 kilometres across the great desert from Libya, entirely through enemy territory, using his own sketch maps. When he reached the Nile he would drop off two agents, then head back the same way. He achieved this stupendous feat of endurance, and Rommel personally promoted him to the rank of major and awarded him an Iron Cross.

Almasy survived the desert campaigns and continued to work for the Abwehr in Turkey, until he sensed he was again on the losing side of a world war. This time he fed his secrets to the British. Even so, when the war ended, he was sent by the Allies to Hungary and imprisoned in a Russian camp. He escaped with the help of friends in the Egyptian royal family, and was bundled into an aeroplane bound for Cairo. Almasy's published memoir of part of his service with and for Rommel, first published in the early 1940s, has just been republished in Hungary. 

- See the The birth and achievements of Hungarian oriental studies
- Read The Real Count Almasy
- See the New York Times article, "The Real Hungarian Count Was No 'English Patient'"
- A great site in Spanish "El verdadero "Paciente Inglés"


János Luppis (b. Fiume, Hungary (Now Rijeka Croatia)
Naval Captain and Engineer:
Co-Inventor of  the Torpedo

In 1860, Janos (Giovanni, John) Luppis, then captain in the Austro-Hungarian Navy, constructed a model of his "coast defender," a form of the torpedo, in Fiume, the Royal Hungarian Adriatic Port (annexed by Yugoslavia after WWI and now part of Croatia). In 1864 he presented the invention to the Austro-Hungarian War Ministry, which rejected it. Luppis turned to Robert Whitehead, an English factory owner in Fiume. They devoted the next two years towards perfecting a practical, mobile underwater weapon. On 26 December 1866 they introduced it to the Ministry with a new name, "torpedo" (electric stingray).  After many failures, because of its inability to run at a constant depth, Whitehead finally had the inspiration for a novel depth keeping device - which was to be his greatest contribution to torpedo design and the basis for his future success. In order to achieve a constant depth the "Whitehead-Luppis" torpedo used an hydrostatic plate to drive the depth rudder. The plate was regulated to a pre-established depth by a spring, connected to a pendulum that helped to absorb the more violent adjustments to the weapon's depth. The weapon achieved some six and a half knots out to 200 yards.

The Austro-Hungarian Defense Ministry purchased the invention the following year. In 1868, after seeing successful demonstrations of the torpedo's ability, the Austrian Navy decided to place an order for the weapon. However, Robert Whitehead, aware of the commercial potential of the weapon, retained the rights to sell to other countries and from then on he devoted all his energies to its development. A new contract was negotiated with Luppis, which gave Whitehead full control of all future weapon sales. Luppis died in Milan in 1875, embittered by the fact that he had allowed an invention he still regarded as his own to have been taken away from him.

Two more Hungarians made important contributions to this weapon: Lajos Obry, a foreman at the arsenal, developed the gyroscope and the alternative pistons component for maintaining horizontal direction, and János Gesztessy, a naval lieutant, invented the heating equipment that was needed to prevent rapidly expanding compressed air from freezing.

- See "Innovators and Innovations"


Magyar Tribes - (< 9th century)

The settler of the Carpathian basin brought many new innovations with them:

  • The Stirrup and wooden-framed saddle
  • Leather Processing - So good was the Magyar method that by the fifteenth century, French tanners were familiar with the Hungarian method of tanning (hongroyage), which used the chemical alum. In the seventeenth century "Hungarian tanning" was used in several European countries and especially in France. In the middle of that century, the French tanner La Roche studied leather-making in Hungary. Jean Baptiste Colbert, the finance minister of Louis XIV, invited Hungarian tanners (hongroyeurs) to France under highly advantageous conditions. Part of the Paris Leather Code, written in 1673, states that "Only leather prepared by the Hungarian method shall be used for straps used for coaches." High resistance leather, manufactured by the Hungarian method, was used mainly for straps, load-bearing belts and girdles.
  • Weapons Making - especially the famous reflex bow.
  • Beef Jerky - Their eating of meat led to a unique invention: when cooked meat was dried and pounded, it could be kept for a long period of time. Boiled in water, meat prepared in this way could provide a nutritious soup. Their warriors took this meat and a shredded dried pasta (tarhonya still used in the Hungarian home) with them on raids that could last for months at a time.
  • Mint Methods - The first mint in Hungary was established (in Esztergom, where the King held court). This mint introduced an old engraving method to minting, the edge of the coin (the silver Denarius) being decorated with a row of fine dots. There were several advantages: the dots on the most vulnerable part of the coin made clipping or removing the silver much harder). As a result, Hungary's coinage became one of the most favored in Europe.

- See "Innovators and Innovations"


Ödön Riszdorfer 
Engineer / Inventor: Co-Developed Automatic Camera and Automatic Shutter for Movie Cameras. Father of the hand held, battery operated light meter 

In 1930, Odon and his younger brother, László, following an agreement with Kodak, started production of the hand held, battery operated light meter (in their workshop in Budapest) under the trade name Kodalux, later Superlux. He improved the device and also developed an automatic shutter for movie cameras. His inventions, which were purchased and adopted by leading companies, revolutionized the photographic industry. More than 120 patents were registered under his name.

A new product from Kodak, the Kodak Six-20 attracted special interest at the 1939 EXPO in New York, as this was the world's very first automatic camera. Patents registered by two Hungarians, Ödön Riszdorfer from Budapest and József Mihályi, employed by Kodak at Rochester since 1923, contributed to the manufacture of this camera.

- See "Innovators and Innovations"


Stephen (Steven, Istvan) Kaali 
Medical Pioneer, Inventor - Patented Bio Electrical Blood Cleansing Device for AIDS and other blood diseases

In the Fall of 1990, Kaali with fellow researcher Dr. William Lyman working at Albert Einstein Medical College in New York City made an important discovery. They found that they could inactivate the HIV virus by applying a low voltage direct current electrical potential with an extremely small current flow to AIDS infected blood in a test tube. Initially, they discovered this in the lab by inserting two platinum electrodes into a glass tube filled with HIV-1 (type 1) infected blood. They applied a direct current to the electrodes and found that a current flow in the range of 50-100 microamperes (uA) produced the most effective results. Practically all of the HIV viral particles were adversely affected while normal blood cells remained unharmed. The viral particles were not directly destroyed by the electric current, but rather the outer protein coating of the virus was affected in such a way as to prevent the virus from producing reverse transcriptase, a necessary enzyme needed by the virus to invade human cells.

This process may also reverse Epstein Barr (Chronic Fatigue Syndrome), Hepatitis and Herpes B. Responsible users of this technology who are HIV positive, may expect a Negative P24 surface antigen or PCR test (no more HIV detectable in blood) after 30 days. A simplified version of this unit now makes self help feasible. The potential to clean and potentize the blood banks of the world with this instrument is truly staggering. Bob Beck's Sept. 96 Explore Magazine Article notes a study on the life span of blood cells sealed under cover slips on microscope slides. While the average life of "normal" blood is about 4 days; blood cells treated with a mild microcurrent live for well over a month!

Steven G. Kaali is Medical Director of the Women's Medical Pavilion, Diplomate of the American board of Obstetrics and Gynecology, Member of the American Association of Gynecologic Laparoscopists, and Fellow of the American College of Obstetricians and Gynecologists. 

- See http://www.riferesonator.com/bio-electro.htm or
- His homepage is http://www.gynpages.com/wmp/md.html
- He also invented a low-voltage birth control device thttp://www.bikereader.com/Bokeh/stories/pulp/edison.html
- Read his patents at http://www.bioelectric.ws/eng/patent.html or http://www.toolsforhealing.com/Health/Beck/Kaali_Patent.htm


József Mihályi
Engineer / Inventor: Co-Developed Automatic Camera, Chief Designer at Kodak

A new product from Kodak, the Kodak Six-20 attracted special interest at the 1939 EXPO in New York, as this was the world's very first automatic camera. Patents registered by these two Hungarians, Ödön Riszdorfer from Budapest and  employed by Kodak at Rochester since 1923, contributed to the manufacture of this camera. Mihályi became the chief designer at Kodak for approximately 30 years and held more than 200 patents.

- See "Innovators and Innovations"


Franz (Gabriel) Alexander (1891-1964)
Physician and Psychoanalyst: Psychoanalytic Pioneer - Father of Psychosomatic Medicine

Played leading role in identifying emotional tension as a significant cause of physical illness delineating three "elementary tendencies", (to take, give and receive) the balance of which determine the severity of neurotic anxiety. He attended one of several academically excellent secondary schools in Budapest, the Minta Gymnasium, also called the Trefort Gymnasium because of its location on Trefort Street. Among its other famous alumni are Tódor von Kármán, "Father of Supersonic Flight"; Edward Teller, "Father of the Hydrogen Bomb"; Nobel Prize winning chemist George de Hevesy; and physicist Leo Szilard. 

Alexander is one of the most important members of the group to which we often refer as "the second generation of psychoanalysts". He was trained in Berlin, where he had several contacts with Freud. He was an independent thinker, and his research interests are so wide that it would be too long to list them here (suffice to mention his renown work on psychosomatics). He was the leading figure of what became to be known as the "Chicago school", characterized by an emphasis on the emotional relationship rather than intellectual insight as the main curative factor in psychoanalysis.

- Read his work "The corrective emotional experience" (1946) with a historical preface


<< Back to Page 1

Jump to:

Send me a message!


Site Index            Back to Top            Photos Index

Thanks for coming, I hope you have enjoyed it, will recommend it to your friends, and will come back later to see my site developing and expanding.

I'm trying to make my pages enjoyable and trouble free for everyone, please let me know of any mistakes or trouble with links, so I can fix any problem as soon as possible.

These pages are best viewed with monitor resolution set at 640x480 and kept simple on purpose so everyone can enjoy them across all media and platforms.

Thank you.


Webmaster

free webpage hit counter